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Abstract. We revisit the Cramer, Damgård, Schoenmakers (CDS) app-
roach for composing sigma protocols, and adapt it to a setting in which
the underlying protocols have multiple rounds of interaction. The goal of
CDS composition is to prove compound NP-relations by combining mul-
tiple “atomic” proof systems. Its key feature is that it interacts with the
atomic proofs in a generic fashion, enabling simpler and more efficient
implementation.

Recent developments in multi-round protocols call for the adapta-
tion of CDS composition beyond its original scope, which not only was
restricted to three-move protocols but in fact fails in the multi-round
case, as well as in the composition of so-called k-special sound proofs.

We propose a new method for multi-round composition in the plain
model, in a soundness preserving way and with an “offline” zero-
knowledge simulation property. The need for handling arbitrary mono-
tone access structures in mNC1, which is all Boolean function fami-
lies represented by polynomial-size formulas over some fixed complete
basis, leads us to identify a complexity theoretic problem of independent
interest.

Prior to our work, multi-round composition was either restricted to
the random oracle model, or worked only for argument systems, and
moreover required heavy “online” zero-knowledge simulation.

Keywords: Zero-Knowledge · Composition · Multi-round · Sigma
Protocol · Online Offline

1 Introduction

Driven by efficiency considerations, proof systems are sometimes optimized for
specific languages, and then more complex statements are proved by composing
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them. Towards this end, one may be interested in a transformation that takes
proof systems for relations, R1, . . . , Rn as black-box, and produces a proof system
for a compound relation RΓ for access structure Γ , where RΓ is satisfied if and
only if there exists (i1, . . . , it) ∈ Γ for which Ri1 , . . . , Rit

are satisfied.
For a class of public-coin proofs known as Σ-protocols [19], Cramer, Damgård,

and Schoenmakers presented a framework for generic compositions concerning
general monotone access structures represented by monotone formulas in [22].
This framework, often referred to as CDS composition, was later extended to
polynomial-size monotone span programs (MSP) in [20]. It is unconditional and
preserves the round complexity, soundness, and zero-knowledge of the underlying
Σ-protocols.

To attain its desirable features, CDS composition crucially relies on the struc-
ture and security of the underlying Σ-protocols. However, the requisite require-
ments for composition are not always satisfied. For instance, it is observed
in [1,25] that if the 2-special soundness of underlying protocols is relaxed to
k(> 2)-special soundness, e.g., [14,32], CDS composition is no longer secure.
Moreover, as noted in [27] and elaborated on later here, its natural extension
to multi-round public-coin protocols for more than three moves fails to provide
knowledge soundness.

Recent years have witnessed the emergence of several notable multi-round
public-coin protocols, including ones based on a pre-processing variant of the
MPC-in-the-Head paradigm [34] known as KKW [36], Bulletproofs [15], and
many IOP-based protocols, e.g., [12,16,35]. Adapting CDS-like composition to
such protocols would be desirable, especially if this composition is generic so
that the (already optimized) underlying protocols remain unchanged.

The question of generically turning multi-round protocols into non-interactive
arguments has been previously considered in the random oracle model [27], albeit
the composition was restricted to a simple 1-out-of-n structure. Another app-
roach followed Lindell’s paradigm [38] in which the prover commits to all but
the last messages and opens them at the end of the protocol execution [30].
Combined with the idea of “stacking” protocols [28,29], the “commit and open”
approach enjoys compressed communication. However, as pointed out in [27],
Lindell’s paradigm is best suited for arguments rather than proofs, as prover
messages tend to be large and so committing to every one of them in a statisti-
cally binding manner is communication inefficient. Another shortcoming is that,
even in cases as simple as 1-out-of-n composition, the honest prover is forced to
defer n − 1 simulator runs to the very last message of the protocol.

1.1 Our Contribution

We address the question of whether it is possible to generically compose multi-
round protocols in the plain model. We aim to preserve soundness and to allow
the prover to perform the bulk of the simulation work before the protocol begins,
and in fact even before the composition structure Γ is known. As mentioned ear-
lier, such an offline simulation property is not satisfied by earlier constructions.
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Theorem 1. (Informal) Let Πi be a (2μ + 1)-round, (k1, k2, . . . , kμ)-special
sound public-coin honest verifier zero-knowledge protocol for NP-relation Ri.
There exists a composition method that, given Πi for i ∈ [n] and a monotone
access structure, Γ over [n] as input, outputs a (2μ+1)-round public-coin honest
verifier zero-knowledge protocol Π for compound relation RΓ .

The resulting Π is as sound as Πi and special honest verifier computational
zero-knowledge. Prover’s algorithm is efficient if Γ is in mNC1. Prover’s online
computation complexity is as close as that for proving Πi’s for all i ∈ I for I ∈ Γ
where the prover knows the witness.

In other words, we extend CDS composition to also work for multi-round
and k-special sound protocols without having to sacrifice valuable features such
as offline simulation, soundness preservation, and support for a broad class of
access structures. Given our result, one can compose efficient protocols such
as [6,15] with previously unsupported structures, and the added benefit of offline
simulation. The price we pay is that we settle for computational zero-knowledge
and linear communication complexity in the number of underlying protocols.

As briefly mentioned in [27], one could extend delayed-input related ideas [18]
to multi-round protocols in the same way as [30] extends [29], and then apply
techniques from [20] to handle Γ ∈ MSP. The difference between those previous
works and ours boils down to whether to commit to ‘a’ or ‘c’, where a and c
stand for all outgoing messages from the prover and challenges, respectively.
The former suits arguments where Com(a) can be small for large a, but not
for proofs or for applications demanding high throughput due to “online” zero-
knowledge simulations. We compare the approaches at a high-level in Table 1. A
more detailed comparison is given later in Table 2.

Table 1. High-level comparison. Previous works refer to [30] and an extension of [18]
based on Lindell’s paradigm in the standard model.

Previous Works Ours

soundness
Costly for large |Com(a)| √ |Com(c)| is small

preservation

performance
all-online

√
offlinea ZK simulation√

compressed argument (t-out-of-n) linear communication
CRS/one more round

√
plain & round preserving

functionality
√

delayed-input all-fixed input√
MSP mNC1

aOur offline computation is not completely independent of the statement. It is useful
for scenarios where atomic relations are known in advance, and their composition is
determined when the proof protocol starts.
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1.2 Techniques

We begin by pointing out the challenges arising when attempting to extend
CDS composition to multi-round and k-special sound protocols. We assume that
readers are familiar with relevant concepts, and refer them to Sect. 2.5 otherwise.

Inconsistent Extraction. Consider as an example a five-round public-coin pro-
tocol for proving statement A ∧ B that consists of two sequential executions of
three-round protocols proving statements A and B individually. By rewinding
at the first and second challenges, respective witnesses ωA and ωB are obtained.
Then consider composing two such five-round protocols to prove the disjunctive
statement (A ∧ B) ∨ (C ∧ D). CDS composition suggests running the protocols
in parallel, sharing a challenge into two used in each atomic protocol. Suppose
that the first challenge, c1, is shared into c1A and c1C and used to prove A and
C respectively. Similarly, the second challenge, c2, is shared into c1B and c1D and
used to prove B and D respectively. Suppose that, by rewinding at the first chal-
lenge, new challenge c̃1(�= c1) is shared into c̃1A(�= c1A) and c̃1C(= c1C), yielding
ωA. We thus expect that the prover knows witness (ωA, ωB) for clause (A ∧ B).
But, by further rewinding at the second challenge, new challenge c̃2(�= c2) would
be shared into c̃2B(= c2B) and c̃2D(�= c2D), yielding ωD unexpectedly.

Adaptive Choice of Simulated Challenges. For k-special sound protocols, one
could simulate executions with up to k − 1 different challenges for the same
first message. This feature could be exploited by a cheating prover in CDS com-
position. By adaptively selecting challenges used in simulated executions, the
cheating prover can ensure that k rewindings do not yield k colliding transcripts
at any protocol executions. In other words, the composed protocol is not spe-
cial k-sound. In [1], a solution that eliminates prover control by using random
oracles to generate challenges was presented. It is not known how to circumvent
this problem in the plain model.

Our Approach. Observe that both of the above issues are due to the adaptive
choice of simulated challenges by the malicious prover. We thus bind all chal-
lenges in each protocol run with a commitment at the beginning. They are then
opened at the end of the protocol. Using a dual-mode commitment scheme, com-
mitments for real protocol runs are simulated at the beginning and eventually
equivocated to actually observed challenges. In prior works, e.g., [18], binding
keys are used to commit to the first and all succeeding messages from the prover
in the real protocol runs. Our approach uses them in a “dual” way to commit to
challenges in each simulated protocol run.

Adversarial Access Structures for Key Allocation. In the above approach, the
verifier has to be convinced that the binding and equivocal commitment keys
are allocated appropriately. Then, what is the “appropriate” allocation of com-
mitment keys for monotone Γ in general? There must not be too many equivocal
commitments for the strategy to be meaningful even if the prover has exceeding
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witnesses and can complete real protocol runs than necessary. However, claiming
an upper limit is a non-monotone statement, which is challenging to prove effi-
ciently directly. Even if we prove about binding keys, it is unclear whether the
structure, say Γ ′, which the binding keys should follow allows efficient proofs in
general. For instance, when Γ is in a compact CNF, can we also have compact,
monotone Γ ′?

We define this adversarial structure Γ ′ precisely and study its computational
complexity in terms of the complexity of Γ . By definition, the monotone DNF
size of Γ ′ is equal to the monotone DNF size of Γ . If, however, Γ is represented as
a size-s CNF, then the (unrestricted) circuit complexity of Γ ′ cannot in general
be bounded by any polynomial in s unless NP �⊆ P/poly (Theorem 3). On the
positive side, we show that if Γ is represented as a read-once formula, then the
formula size of Γ ′ is polynomially related to the formula size of Γ (Theorem 4).

To prove Theorem 3, we construct an explicit sequence of monotone 2CNFs
Γn on with poly(n) variables such that the satisfiability of a 3CNF φ reduces
to checking whether the adversarial structure Γ ′

n accepts an input derived from
φ. In graph-theoretic language, adversarial structures of monotone 2CNFs are
monotone closures of maximal independent sets, allowing us to leverage ideas
from Karp’s canonical reduction from 3SAT to Independent Set. Theorem 4
is obtained by inductive application of composition rules for conjunction and
disjunction of adversarial structures over disjoint inputs.

Challenge Space Extension. Another problem stems from k-special soundness.
It is unrelated to the above mentioned adaptive choice of simulated challenges.
Although our composition requires secret sharing over the challenge space, the
challenge space of the atomic protocol may not be large enough to map the
shares. This problem was also observed in the original CDS, but in the case of 2-
special sound protocols, it is obvious that the challenge space can be extended t
times in bits in t parallel runs. On the other hand, if, for example, two k-special
sound protocols are executed in parallel, it is not always the case that either
protocol execution will have k distinct challenges in k rewindings. The situa-
tion becomes even more difficult when there are multiple challenges in multiple
rounds.

We introduce the notion of statistical k-special soundness, which allows for
small errors, and show by careful combinatorial analysis that t parallel executions
of a k-special sound protocol form a statistical k-special sound protocol (Sect. 5).
This allows for a combined challenge space sufficient to map the shares. Simi-
lar ideas employing weaker notions of special soundness have been considered
in [9,23,24,41,42]. They all follow the generic “special soundness ⇒ knowledge
soundness” framework and show a weaker notion of special soundness is still
knowledge sound. Such weaker notion applies to a more general structure than
thresholds. Our starting point, however, diverges from theirs. Since we are more
concerned with the issue of soundness preserving during compositions, we instead
focus on introducing a notion which is “flexible”, rather than consider how much
relaxed notions can imply knowledge soundness.
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Table 2. Comparison of generic compositions of public-coin protocols. Notations: x-
(C)SS: (Computational) x-Special Soundness, RBRS: Round-by-Round Soundness, CS:
Computational Soundness. HVZK: Honest Verifier ZK, EHVZK: Extended (Special)
Honest Verifier ZK, SHVZK: Special Honest Verifier ZK, HVCZK: Honest Verifier
Computational ZK, AOK: Argument of Knowledge, AIS: Adaptive Input Soundness,
WI: Witness Indistinguishability, IDTC: Instance Dependent Trapdoor Commitment,
Cham-Σ: Chameleon Σ-protocol, PolyCom: Polynomial Commitment, CRH: Collision-
Resistant Hash, NIPBC: Non-Interactive Partially Binding Commitment (available in
CRS model), DualCom: Dual-mode Commitment.

Scheme
Underlying Protocol Composed Protocol

Composition
Extra

Assumptions
Offline

Simulation
# of

Rounds
Soundness ZK

# of
Rounds

Soundness ZK

CDS94 [22] 3 2-SS SHVZK 3 2-SS SHVZK MSP - yes
Delayed-Input [17] 3 2-SS SHVZK 3 2-SS SHVZK 1-OR CRS, Cham-Σ no

Delayed Threshold [18] 3 2-SS SHVZK 3 (2n + t)-AIS WI t-out-of-n IDTC no
Share-then-Hash [1] 3 k-SS SHVZK 1 AOK HVZK MSP NPROM -

Acyclicity Program [2] 3 k-SS SHVZK 1 AOK SHVZK ACP ROM -
Compressed Σ [6] 3 2-SS SHVZK O(log(t + n)) (n, 2, 3, . . . , 3)-CSS SHVZK t-out-of-n PolyCom, DL yes

DAG-Σ [43] 3 2-SS SHVZK 3 AOK SHVZK CNF Cham-Σ, CRH yes
Stacking-Σ [28,29] 3 2-SS EHVZK 3 AOK EHVZK t-out-of-n NIPBC(CRS) no

Threshold Stacking [10] 3 2-SS EHVZK 3 AOK EHVZK t-out-of-n NIPBC(CRS),CRH no
FGQRW23 [27] 2μ + 1 RBRS HVZK 1 CS HVZK 1-out-of-n NPROM, CRS -

Speed-Stacking [30] 2μ + 1 CS EHVZK 2μ + 1 CS EHVZK t-out-of-n NIPBC(CRS) no
Ours(Sec.3) 2μ + 1 (k1, . . . , kµ)-SS HVZK 2μ + 1 (k1, . . . , kµ)-SS SHVCZK mNC1 DualCom yes

1.3 Related Work

In Table 2, we present a qualitative comparison of compositions in the litera-
ture. We refer to the respective papers for the formal notions of security in the
table. The upper table above the line is about the compositions dedicated to
three-round protocols, and those below the line support more than three-round
protocols. The second groups of columns show the properties of the underlying
protocols that are sufficient for the respective compositions to work. Since k-SS
is more general than 2-SS, compositions that admit k-SS protocols as input are
more general, and hence more widely applicable. Similarly, we have HVZK >
SHVZK > EHVZK in terms of generality; compositions accepting HVZK pro-
tocols are the most general. (Some compositions admit a trade-off between the
generality of the zero-knowledge property and the composition type. In that case,
the table takes more general composition types.) The third groups of columns
show the properties of the compound protocol. Some compositions noted as 1
round are dedicated to producing non-interactive proofs. In the Soundness col-
umn, 2-SS and (k1, . . . , kμ)-SS implies a proof of knowledge (POK), and AOK
denotes an argument of knowledge. Regarding the ZK column, SHVZK is a
stronger property than HVZK, thus making it preferable as an achieved goal.
The rightmost groups of columns show the type of composition, extra assump-
tions, and capability of offline zero-knowledge simulation. MSP and ACP are
orthogonal and the most general types of compositions. Regarding the extra
assumptions, we focus on assumptions that highlight important differences and
ignore mild ones such as assuming some common domains for all underlying
protocols.
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Many of previous works, e.g., [1,2,6,11,17,22,29,32,33,43], are dedicated to
three-round protocols. Each has its own unique properties in terms that may not
be listed in Table 1, in exchange of limitations or extra assumptions. The compo-
sition in [17] is for a single OR only but allows delayed inputs where the instances
to prove can be determined after the protocol starts. [18] gives compositions of
delayed-input protocols for threshold structures and states adaptive soundness.
As explained earlier, it can be extended to multi-round composition following
the structure of [30]. [29] achieves logarithmic communication complexity in the
number of variables for a 1-out-of-n structure in the CRS model. Its threshold
variant is improved in communication in [10]. [6] also enjoys logarithmic com-
munication complexity for relations commonly used in the discrete-logarithm
setting. [2] follows the idea of sequential-OR composition in [3,26] and extends
the composition function to acyclicity programming producing non-interactive
proofs in the random oracle model. Multi-round compositions are addressed
explicitly in [27] and [30] as we mentioned earlier.

In [37], an OR-composition of Ligero [5] proof system is presented. The prover
commits to the challenges of Ligero with a statistically hiding commitment and
later proves that the commitment is consistent with one of the transcripts. This
idea can be seen as the bare bones of approaches using commitments, leaving the
generality and the key generation issue unsettled. In particular, their composition
increases the number of rounds for their protocol.

1.4 Organization

In Sect. 2, we introduce basic notations and building blocks. We also revisit
standard definitions regarding public-coin proof protocols and CDS composition
with its natural extension to the multi-round case, which is our starting point. We
present our composition in Sect. 3 followed by a complexity analysis of adversarial
structures in Sect. 4 and challenge space extension of k-special sound protocols
in Sect. 5. We finally conclude with some closing thoughts in Sect. 6.

2 Preliminaries

2.1 Notation

For a finite set S, we write a ←$S to denote that a is uniformly sampled from S.
We denote the security parameter by λ ∈ N. Given two functions f, g : N → [0, 1],
we write f ≈ g if the difference |f(λ) − g(λ)| is asymptotically smaller than the
inverse of any polynomial. A function f is said to be negligible if f ≈ 0, whereas
it is said to be overwhelming when f ≈ 1. For integers m,n, such that m ≤ n,
we denote by [m,n] the range {m,m + 1, . . . , n}. We denote by [n] the range
[1, n]. A sequence of indexed values, (x1, . . . , xn) is denoted by {xi}i∈[n].

Similarly, we denote (xi1 , . . . , xik
) by xi∈I for I = {i1, . . . , ik}. We assume

that index set I is trivial from xi∈I . When A is a probabilistic algorithm, we
denote by A(x; r) an execution of A on input x and random coins r taken from
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an appropriate domain defined for A. If the random coins are not important, we
simply write A(x). We generally assume stateful adversaries, e.g., in the game
execution a ← A(x); e ←$ {0, 1}λ; z ← A(e) the adversary A in the second call
knows the state of A after the first call (in particular, it knows x and a).

2.2 Public-Coin Proof System

We follow the definitions of [7]. Let R : X × W → {0, 1} be a binary rela-
tion defined over a set of instances X and a set of witnesses W. It is also
denoted as R(instance, witness) = {description} that evaluates to 1 if and
only if description is fulfilled for instance with witness. Language LR associ-
ated by R is LR := {x ∈ X | ∃w ∈ W : R(x,w) = 1}. By LRW , we denote set
LRW := {(x,w) | R(x,w) = 1}. An interactive proof system Π for relation R is
a pair of interactive algorithms, prover P and verifier V , where a witness w is
given to P as private input and instance x is given to both P and V as common
input, and V outputs b ∈ {0, 1} at the end of the execution. By 〈P (w), V 〉(x) → b
we denote an execution of the algorithms. A transcript of a protocol execution
consists of x, b, and all content of input and output communication tapes of V .
It is (perfectly) complete if, for any (x,w) ∈ LRW , 〈P (w), V 〉(x) → 1.

Definition 1 (Knowledge Soundness). An interactive proof system for rela-
tion R is knowledge sound with knowledge error ε if there exists an expected
polynomial-time algorithm E (extractor) that, for every algorithm P ∗, every
x ∈ {0, 1}λ, and aux ∈ {0, 1}∗, there exists a negligible function ε that
Pr[w ← EP ∗(aux)(x) : R(x,w) = 1] ≥ Pr[〈P ∗(aux), V 〉(x) = 1] − ε(λ).

An interactive proof system is called a proof of knowledge (PoK) if it is
knowledge sound against unbound P ∗ as above. It is called an argument of
knowledge (AoK) if it is knowledge sound against polynomial-time P ∗.

Definition 2 (Honest-verifier Zero-Knowledge). An interactive proof sys-
tem is honest-verifier zero-knowledge if there exists a polynomial-time algorithm
S (simulator) that, for any (x,w) ∈ LRW , distribution of outputs from S(x) and
that of transcripts observed in 〈P (w), V 〉(x) are indistinguishable.

Definition 3 (Public-Coin Proof Protocol). A (2μ + 1)-round public-coin
proof protocol for relation R is a set of polynomial-time algorithms A, {Zi}i∈[μ],
V and efficiently and uniformly sampleable space {Ci}i∈[μ] that constitutes an
interactive proof system (P, V ) that:

Step 1: P runs A(x,w; r) → a and sends a to V .
Step 2i: V uniformly choose ci from Ci and send it to P .
Step 2i + 1: P runs Zi(x,w, {cj}j∈[i]; r) → zi and sends zi to V
Output: V runs V(x, a, {ci}i∈[μ], {zi}i∈[μ]) → b and outputs b.

A tuple (x, a, {ci}i∈[μ], {zi}i∈[μ]) is called an accepting transcript if
V(x, a, {ci}i∈[μ], {zi}i∈[μ]) = 1.
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Definition 4 (Tree of Transcripts [7]). Let (k1, . . . , kμ)-tree of transcripts for
a (2μ + 1)-round public-coin proof protocol is a set of K =

∏μ
i=1 ki transcripts

arranged in the following tree structure. Nodes in this tree correspond to responses
from the prover and the edges to challenges from the verifier. Every node at
depth i has ki children and ki pairwise distinct challenges. Every transcript can
be represented as one path from the root node to a leaf node.

Definition 5 ((k1, . . . , kμ)-Special Soundness [7]). A (2μ + 1)-round public-
coin proof protocol is (k1, . . . , kμ)-special sound if there exists a polynomial-time
algorithm that, given a distinct (k1, . . . , kμ)-tree of accepting transcripts, outputs
w that satisfies R(x,w) = 1.

In [7], it is shown that the above implies knowledge soundness.

Definition 6 (Special Honest-Verifier Zero-Knowledge). A (2μ + 1)-
round public-coin proof protocol is special honest-verifier zero-knowledge if there
exists a polynomial-time algorithm S that, for any (x,w) ∈ LRW and ci ∈ Ci

for i ∈ [μ], distribution of (a, {ci}i∈[μ], {zi}i∈[μ]) generated as (a, {zi}i∈[μ]) ←
S(x, {ci}i∈[μ]) and that of (a′, {ci}i∈[μ], {z′

i}i∈[μ]) generated as a′ ← A(x,w; r)
and z′

i ← Zi(x,w, {cj}j∈[i]; r) are indistinguishable.

A Σ-protocol [19] is a three-round public coin proof protocol that is 2-special
sound and special honest verifier zero-knowledge.

2.3 Monotone Access Structure

First we recall the definition of the monotone access structure from [22].

Definition 7 (Monotone Access Structure [22]). An access structure Γ ⊂
2M defined over a set M is called a monotone access structure if for all A ∈ Γ
and for all B ⊃ A it holds that B ∈ Γ . Sets in Γ are called authorized sets, and
sets not in Γ are called unauthorized sets.

Definition 8 (Dual Structure [22]). Let Γ be an access structure defined over
a set M . If A ⊆ M , then Ā denotes the complement of A in M . Now Γ ∗, the
dual access structure is defined as follows:

A ∈ Γ ∗ ⇔ Ā /∈ Γ .

The dual Γ ∗ of a monotone access structure is also monotone, and satisfies
(Γ ∗)∗ = Γ .

2.4 Secret Sharing Scheme

A semi-smooth perfect secret sharing scheme [22], SSSΓ , over domain S and
access structure Γ over a set M consists of four polynomial-time algorithms,
Share, Rec, CheckShares and Complete that:
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– ShareΓ (s) → {si}i∈M is a probabilistic algorithm that takes secret s ∈ S and
outputs shares {si}i∈M .

– RecΓ ({si}i∈A) → s is a reconstruction algorithm that takes a qualified set of
shares {si}i∈A, A ∈ Γ , and recovers secret s ∈ S.

– CheckSharesΓ (s, {si}i∈M ) is a share verification algorithm that takes secret s
and all shares {si}i∈M , returns 1 or 0.

– CompleteΓ (s, {si}i∈Ā) takes shares of a non-qualified set of shares {si}i∈Ā for
A ∈ Γ and secret s, and outputs {si}i∈A that {si}i∈M constitute a complete
set of shares of s.

It provides the following properties:

– Correctness: For all s ∈ S, {si}i∈M ← ShareΓ (s), and A ∈ Γ , it holds that
s ← Rec({si}i∈A).

– Perfect hiding: For any A ∈ Γ , s ∈ S, and {si}i∈M ← ShareΓ (s), distribution
of {si}i∈Ā, denoted by SĀ, is independent of s.

– Consistency testing: CheckSharesΓ (s, {si}i∈M ) returns 1 if and only if, for all
A ∈ Γ , RecΓ ({si}i∈A) = s.

– Share completion: For any A ∈ Γ , s ∈ S, {si}i∈Ā ← SĀ, and {si}i∈A ←
CompleteΓ (s, {si}i∈Ā), it holds that 1 ← CheckSharesΓ (s, {si}i∈M ).

Efficient SSSΓ exists for Γ being a threshold structure [39], monotone cir-
cuit [13], and monotone span program [21]. If, for every A ∈ Γ , SĀ equals uniform
distribution over S|Ā|, then it is called a smooth perfect secret sharing scheme.
Shamir’s secret sharing scheme for threshold structures is an example.

2.5 CDS Composition

We describe CDS composition in a general form for 2μ + 1-round protocols. It
matches the original one at μ = 1. We warn that it is for introducing consistent
notations for succeeding sections, and indeed not sound for μ ≥ 2 and k(> 3)-
special sound as mentioned earlier.

Let ΠRi
be a (2μ + 1)-round public-coin proof protocol for relation Ri, and

(xi, wi) be a pair of instance and witness satisfying Ri(xi, wi) = 1. Let Γ be a
monotone access structure over [n], and RΓ ((xi, . . . , xn), (wi, . . . , wn)) be a com-
pound relation that returns 1 if and only if there exists A ∈ Γ that Ri(xi, wi) = 1
for all i ∈ A. We denote the honest verifier zero-knowledge simulator of ΠRi

by
Si. Given ΠRi

for i ∈ [n] and access structure Γ , CDS composition constructs
Prover and Verifier as follows where steps 2l and 2l + 1 are repeated for l ∈ [μ]:

ΠCDS
μ,Γ (Prover({xi}i∈[n], {wi}i∈A),Verifier({xi}i∈[n])):

1. For each i ∈ Ā, Prover calls the honest verifier zero-knowledge simulator
(ai, c

l∈[μ]
i , z

l∈[μ]
i ) ← Si(xi). For those i ∈ A, Prover commits to ai by

running ai ← Ai(xi; ri). Prover sends {ai}i∈[n] to Verifier.

2l. Verifier samples cl $←− Cl, and sends it to Prover.
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2l + 1. Prover completes shares by {cl
i}i∈A ← CompleteΓ ∗(cl, {cl

i}i∈Ā), and com-
putes zl

i ← Zi(xi, wi, c
j∈[l]
i ; ri) for all i ∈ A. It then sends {{cl

i}i∈[n],

{zl
i}i∈[n]} to Verifier.

Final. Verifier runs Vi(xi, ai, c
l∈[μ]
i , z

l∈[μ]
i ) for i ∈ [n] and CheckSharesΓ ∗(cl,

{cl
i}i∈[n]) for l ∈ [μ], and outputs 1 if all outputs are 1, outputs 0, other-

wise.

It is shown in [22] that, if every ΠRi
is a 3-round public-coin proof proto-

col that is 2-special sound and honest verifier zero-knowledge, and Γ admits
a smooth perfect secret sharing scheme, then the above protocol ΠCDS

1,Γ is a
Σ-protocol for relation RΓ . It admits offline simulation since zero-knowledge
simulator Si is invoked only in the first step of the prover algorithm. If every
ΠRi

is special honest verifier zero-knowledge, the above can be augmented to
accept access structure Γ that admits a semi-smooth secret sharing scheme. It
is done by modifying the prover’s first step in a way that it first shares a ran-
dom secret to obtain challenge ci for i ∈ Ā and runs the special honest verifier
zero-knowledge simulator on input xi and ci.

2.6 Dual-Mode Commitment

Definition 9 (Dual-Mode Commitment Scheme). A dual-mode com-
mitment scheme, dmCom := (CGenBIND,CGenHIDE,Com,Eqv), is a tuple of
polynomial-time algorithms that:

– CGenBIND(1λ) → ck: The binding key generation algorithm that generates a
binding commitment key ck.

– CGenHIDE(1λ) → (ck, td): The hiding key generation algorithm that outputs a
hiding commitment key ck and a trapdoor td.

– Comck(m; r) → com: The commitment algorithm that takes a message m and
commitment key ck as input, and outputs a commitment com.

– Eqvtd(com,m′, r′,m) → r: The equivocation algorithm that takes trapdoor td,
and target (com,m′, r′,m) of equivocation as input, outputs a randomness r
matching m.

We require the dual-mode commitment scheme to provide the following prop-
erties. It is noted that we do not require binding property in the hiding mode.

Definition 10 (Security of Dual-mode Commitment).

– Mode Indistinguishability: Distribution of binding keys and that of hiding keys
are computationally indistinguishable.

– Equivocality: For any λ ∈ N, (ck, td) ← CGenHIDE(1λ), (m′,m) ∈
{0, 1}∗, com ← Comck(m′; r′), r ← Eqvtd(com, ck,m′, r′,m), it holds that
Comck(m; r) = com.

– Perfect Binding in Binding Mode: For any λ ∈ N, ck ← CGenBIND(1λ), and
com ∈ {0, 1}∗, there exists at most one (m, r) ∈ {0, 1}∗ that satisfies com =
Comck(m; r).
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– Computational Hiding in Binding Mode: For any λ ∈ N, ck ← CGenBIND(1λ),
and (m0,m1) ∈ {0, 1}poly(λ) of equal length, distributions Dck(mb) :=
{(ck, com) | com ← Comck(mb; r)} for b ∈ {0, 1} are computationally indis-
tinguishable.

– Perfect Hiding in Hiding Mode: For any λ ∈ N, (ck, td) ← CGenHIDE(1λ),
and (m0,m1) ∈ {0, 1}poly(λ) of equal length, above distributions Dck(m0) and
Dck(m1) are identical.

As an additional requirement, we assume that there exists a Σ-protocol,
Πbind, for proving the binding-key relation:

Rbind(ck, t) = {ck = CGenBIND(1λ; t)}.

In Appendix A, we present an instantiation of a dual-mode commitment scheme
with an efficient Σ-protocol for the binding relation based on the decision Diffie-
Hellman assumption.

3 Our Composition

We first introduce building blocks for our construction in Sect. 3.1 including
some new notions referred in the construction and further studied in succeeding
sections. The main construction is presented in Sect. 3.2 followed by analysis of
security and performance in Sect. 3.3 and 3.4. We also discuss some extensions
in Sect. 3.5.

3.1 Building Blocks

We define some structures associated to Γ and present its useful properties.

Definition 11 (Adversarial Structure). For a monotone access structure Γ
over a set M , minimal authorized structure Γmin , minimal adversarial structure
Γ̄min , and monotone adversarial structure Γ ′ are defined as follows:

Γmin = {A | A ∈ Γ ∧ ∀a ∈ A,A \ {a} /∈ Γ},

Γ̄min = {A | Ā ∈ Γmin },

Γ ′ = {B | ∃A ∈ Γ̄min s.t. B ⊇ A}.

As an example, if M = [n] and Γ is a (t, n)-threshold structure, then Γ ∗ is
a (n − t + 1, n)-threshold structure, Γmin =

(
n
t

)
, Γ̄min =

(
n

n−t

)
, and Γ ′ is a

(n − t, n)-threshold structure.
Our main construction involves the following building blocks:

– Πi = (Ai, Cl∈[μ]
i ,Z l∈[μ]

i ,Vi,Si): a (2μ + 1)-round public-coin proof protocol
for relation Ri.

– dmCom := (CGenBIND,CGenHIDE,Com,Eqv): a dual-mode commitment scheme
equipped with Σ-protocol Πbind for relation Rbind.
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– SSSΓ ∗ = (Share,Rec,CheckShares,Complete): a smooth secret sharing scheme
for Γ .

From Πbind, we construct a Σ-protocol for proving the allocation of binding keys
satisfying adversarial structure Γ ′. Let Rbind

Γ ′ be a relation composed of Rbind

for n keys ck1, . . . , ckn according to access structure Γ ′. That is, Rbind
Γ ′ (cki, ti) is

satisfied if and only if there exists A ∈ Γ ′ that all {cki}i∈A are binding keys. Let
Πbind

Γ ′ = (AΠbind
Γ ′ , CΠbind

Γ ′ ,ZΠbind
Γ ′ ,VΠbind

Γ ′ ) be a Σ-protocol for relation

Rbind
Γ ′ = {({cki}i∈[n]; {ti}i∈Ā) : cki = CGenBIND(1λ; ti) ∀i ∈ Ā}.

It can be constructed by composing Πbind with respect to Γ ′ according to CDS
composition.

Finally, we introduce statistical k-special soundness that slightly relaxes k-
special soundness by allowing small statistical errors with adaptation to the
multi-round setting. This careful treatment is important for our composition to
cover a broader range of realistic atomic protocols. Section 5 presents a detailed
study of this notion.

Definition 12 (Statistical (k1, . . . , kμ)-Special Soundness). A (2μ + 1)-
round public-coin proof protocol is statistical (k1, . . . , kμ)-special sound if there
exists a polynomial-time algorithm that, given a distinct (k1, . . . , kμ)-tree of
accepting transcripts chosen from all possible trees of accepting transcripts, out-
puts w that satisfies R(x,w) = 1 except for some negligible probability κ. We
denote this κ as the special soundness error.

Remark 1. In this definition we consider the case that the special soundness error
κ distributes over the choices of challenges. To make this precise, we simplify
trees of accepting transcripts as follows: we ignore differences of nodes among
different trees, i.e., we regard all trees with the same edges but different nodes
as the same tree. We denote a tree is “bad” if the extractor fails to extract a
witness from one of the original trees associated to it. The special soundness
error κ = |bad trees|

|all accepting trees| . There exists an extractor that taken as input a
tree of accepting transcripts succeeds in extracting a witness with overwhelming
probability 1 − κ over the choices of challenges.

3.2 Main Construction

Our soundness-preserving composition is presented in Fig. 1. The private input
to the prover algorithm is a minimal set of witnesses wi∈A that A ∈ Γmin . For
monotone Γ , a prover holding non-minimal authorized set A′ ∈ Γ can find a
minimal authorized subset A ⊆ A′ efficiently just by eliminating elements one
by one until it reaches A for which no more element can be removed.
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Fig. 1. Our Multi-Round CDS Composition.
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3.3 Security

We claim the following security properties of Πsound
Γ .

Theorem 2 (Πsound
Γ ). If dmCom is secure as defined in Definition 10, SSSΓ ∗

is a smooth secret sharing scheme for access structure Γ ∗, Πbind is complete,
2-special sound, and special honest verifier zero-knowledge, and every Πi for
relation Ri is complete, perfect (resp. statistical) (k1, . . . , kμ)-special sound, and
honest verifier zero-knowledge, then, protocol Πsound

Γ is a (2μ + 1)-round public-
coin proof protocol for relation RΓ ((xi, . . . , xn), (wi, . . . , wn)) := {∃A ∈ Γ,∀i ∈
A, Ri(xi, wi) = 1}. It is perfectly complete, perfect (resp. statistical) (k1, . . . , kμ)-
special sound, and special honest verifier computational zero-knowledge.

Proof. Completeness. Completeness directly follows from the correctness of
dmCom and SSSΓ ∗ , the completeness and honest verifier zero-knowledge of Πi,
and completeness of Πbind

Γ ′ . We note that CompleteΓ ∗ works for set Ā of shares
{ci}i∈Ā since Ā /∈ Γ ∗ when A ∈ Γmin .

Special Soundness. We first prove for the case in which the underlying pro-
tocols are perfect (k1, . . . , kμ)-special sound. We prove that given any accepting
(k1, . . . , kμ)-tree of transcripts as input, there exists an efficient extractor E that
outputs a valid set of witnesses w = {wi}i∈A where A ∈ Γmin . The following
facts are implied by the accepting tree of transcripts:

Fact 1. For all i ∈ [n], the verifier Vi accepts on any distinct statement and
atomic transcript (xi,Πi);

Fact 2. For all i ∈ [n], the commitment comi is generated with corresponding
commitment key cki;

Fact 3. The shares {cl,k
i }i∈[n],k∈[kl] of each round l ∈ [μ] are consistent with the

corresponding challenges {cl,k
k }k∈[kl].

Before we show the extractor, we first introduce the following lemma which
is useful in our proof.

Lemma 1. For any A ∈ Γmin and a ∈ A, it holds that Ā ∪ {a} ∈ Γ ∗.

Proof. Let B = Ā ∪ {a}. It suffices to show B̄ /∈ Γ . Observe that B̄ = A \ {a}.
Since A ∈ Γmin , it holds that B̄ = A \ {a} /∈ Γmin ⊆ Γ . ��

The extractor E works as follows: It first runs the extractor of Πbind
Γ ′ on state-

ments {cki}i∈[n] and transcripts taken from the (k1, . . . , kμ)-tree of transcripts.
This extraction will succeed since the commitment keys {cki}i∈[n] and the first
message of Πbind

Γ ′ are all fixed in the initial message (i.e. the root) in the tree.
Moreover, since any branches in the tree are accepting and Πbind

Γ ′ is perfect 2-
special sound, any 2 branches at l = 1 are sufficient to extract witnesses for
Πbind

Γ ′ . The extracted witnesses identify a set A′ ∈ Γ ′ where the prover commits
to challenges in the binding mode.

Suppose that A′ ⊃ Ā contains more elements than Ā. The intuition is as
follows: first, any superset of Ā is a qualified set in Γ ∗, due to Lemma 1 and Γ ∗
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is a monotone access structure. Second, if A′ is a qualified set, the perfect secret
sharing scheme on Γ ∗ and the perfect binding commitment will guarantee that
the composed challenge is the same one since the shares in A′ are the same. Same
composed challenge contradicts to the definition of tree of transcripts. From
Lemma 1 we can conclude that A′ is an authorized set in Γ ∗ and thus shares
{ci}i∈A′ uniquely determine a certain challenge c. From the tree of transcripts
in round l ∈ [μ], the algorithm CheckShares(cl, {cl

i}i∈[n]) can only be satisfied if
all the challenges {cl,k

k }k∈[kl] are equal, which contradicts to the fact that those
challenges are distinct according to the definition of (k1, . . . , kμ)-tree of accepting
transcripts.

Now A′ = Ā, which implies that all the shares in Ā are fixed in advance.
Here A′ is the set that the commitments work in the perfect binding mode,
which means that the committed (shared) challenges must be the same, since
the commitments are given in the root node of the tree of transcripts (they are
included in the first message). The extractor then runs extractors EΠi

for all i ∈ A
expecting to obtain witnesses {wi}i∈A. We then need to prove that in each round
l ∈ [μ], distinct challenges yield all-different shared challenges {cl

i}i∈A. For the
sake of brevity we omit round index l here and assume that there are k distinct
challenges {cj}j∈[k] in this round. We prove that for all m,n ∈ [k] such that
challenges cm �= cn and for all i ∈ A, the shared challenges cm

i �= cn
i . Suppose

that there exist some indices m,n ∈ [k] such that cm
i = cn

i . From Lemma 1
we obtain that {cm

j }j∈Ā ∪ {cm
i } (resp. n) is an authorized set in Γ ∗. Then, the

algorithm CheckShares would only be satisfied on index m,n if cm = cn, which
contradicts to cm �= cn. Finally, we can split a (k1, . . . , kμ)-tree of accepting
transcripts for any underlying protocol Πi(xi, wi) for all i ∈ A. The extractor
EΠi

is able to extract witnesses wi successfully due to the (k1, . . . , kμ)-special
soundness of Πi.

We stress that the above proof is almost orthogonal to the soundness of
underlying protocols, except that in the last step the extractor E invokes special
soundness extractors EΠi

for all i ∈ A. In the perfect special soundness case, EΠi

should always extract witnesses {wi}i∈A. When it comes to statistical special
soundness, the extractors are only able to extract witnesses except with some
special soundness error κi. Due to the smoothness of the perfect secret sharing
scheme, the perfect binding property of the dual-mode commitment and perfect
2-special soundness of Πbind

Γ ′ , the challenges {cl
i}i∈A are uniformly distributed and

independent of A. The overall success probability to extract witnesses {wi}i∈A is∏
i∈A(1−κi) ≥ 1−∑

i∈A κi, which proves that the composition is still statistical
(k1, . . . , kμ)-special sound with error

∑
i∈A κi.

Special Honest Verifier Computational Zero-Knowledge. A special
honest verifier zero-knowledge simulator can be constructed straightforwardly
based on the facts that dmCom is mode indistinguishable, Πi for all i ∈ [n]
are honest verifier zero-knowledge, and Πbind

Γ ′ preserves special honest verifier
zero-knowledge of Πbind due to the property of CDS composition. ��
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3.4 Performance

The total amount of communication in Πsound
Γ is |Πsound

Γ | = |ΠCDS
μ,Γ | + |Πbind

Γ ′ | +
n(|ck|+ |com|+ |rcom|) where |ΠCDS

μ,Γ | = σ/ρ · |Πi|+ μ · σ for total share size σ of
SSSΓ ∗ and challenge size ρ is the communication complexity of the generalized
CDS in Sect. 2.5. |Πbind

Γ ′ | is the communication complexity of Πbind
Γ ′ , which is

expanded to σ′/ρ′ · |Πbind| + σ′ where σ′ is the total share size of SSSΓ ′ and ρ′

is the challenge size of Πbind.
Regarding offline/online computation, observe the prover algorithm in round

1. Computation for i ∈ Ā can be done for all i ∈ [n] in advance, and those for
i ∈ A can be done for all i knowing the witness. Thus, these computations can be
done offline without Γ . Computing AΠbind

Γ ′ depends on Γ ′. Thinking of its actual
computation more carefully, it simulates on i ∈ A and runs the prover algorithm
on i ∈ Ā. Since both binding and hiding keys are prepared for each i ∈ [n], they
are precomputable for all i ∈ [n] without Γ ′. Accordingly, almost all the prover
algorithm in round 1 can be done offline for n fixed statements.

The online computation includes running prover algorithm Z l
j for j ∈ A. It

also computes functions CompleteΓ ∗ and Eqvtdj
for secret sharing that would

require small number of field arithmetic. It remains to consider ZΠbind
Γ ′ . Though

it runs the real prover algorithm for i ∈ Ā, the last-round computation of a Σ-
protocol is usually much less expensive than the first-message computation. It is
indeed the case in our instantiation in Appendix A where the last-round message
is computed by two arithmetic operations in Zp, which is often ignored compared
to exponentiation in computing the first-round messages. Accordingly, the Γ ′-
dependent change of the computational cost for ZΠbind

Γ ′ would be small compared
to the gain obtained by precomputation.

3.5 Extensions

In the construction in Fig. 1, Πi is honest verifier zero-knowledge and SSSΓ ∗ is
smooth. We can extend Γ ∗ to admit semi-smooth SSSΓ ∗ , by requiring Πi to
be special honest verifier zero-knowledge. This is analogous to the general CDS
case, as mentioned in Sect. 2.5.

If zero-knowledge is to be preserved, one can do so by replacing the perfectly
binding dual-mode commitment scheme with a computationally binding one. To
setup the keys based on a computational assumption, the protocol would require
more interaction or a stronger assumption like a common reference strings or
random oracles. We observe that the non-interactive partially binding vector
commitment scheme in [27,29] is not suitable for our construction due to its
inability to provide a witness of a binding key, but it could be modified for this
purpose.

Finally, we stress that our framework can be easily modified to support com-
putational special soundness as well with no harm to the main body of the
framework: the atomic protocol can be regarded as a proof of knowledge of
knowing a witness or a solution to computational hard problems. Our extractor
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will invoke the (computational special soundness) extractors as black-boxes to
extract witnesses of atomic protocols. As a result, the composed protocol is also
computational special sound.

4 Complexity of Adversarial Structure

In this section we sometimes view access structures over [n] as Boolean functions
from {0, 1}n to {0, 1} by identifying subsets of [n] with their indicator vectors
in {0, 1}n.

4.1 A Lower Bound on the Circuit Size of Γ ′

Theorem 3. Assuming NP �⊆ P/poly, for all constants c and s0 there exists a
monotone 2CNF Γ of size s ≥ s0 for which the circuit complexity of Γ ′ is greater
than sc.

As any reasonable monotone model of computation, including monotone cir-
cuits over some fixed basis, monotone span programs, and monotone branching
programs can be simulated by (possibly nonmonotone) circuits with polynomial
blowup in size, Theorem 3 rules out the existence of a polynomial-size Γ ′ in any
of these models when Γ is a 2CNF.

A monotone 2CNF Γ has a faithful graph-theoretic representation by asso-
ciating variables with vertices and clauses with edges. In this representation, Γ ′

has the following interpretation:

Claim. Assuming Γ is a monotone 2CNF over n variables, Γ ′ consists of those
subsets of [n] that contain some maximal independent set of the graph repre-
senting Γ .

Proof. Let G be the graph representation of Γ . The satisfying assignments of Γ
are the vertex covers of G. The minterms of Γ are the minimal vertex covers.
By definition, the minterms of Γ ′ are the complements of the minimal vertex
covers, namely the maximal independent sets. ��

To prove Theorem 3 we construct a fixed family of graphs {Gn}, where Gn

has 64
(
n
3

)
vertices, for which the following problem is NP-hard:

Maximal Independent Superset (MISS): On inputs 1n and Y ⊆ [64
(
n
3

)
],

does Y contain a maximal independent set of Gn?

Proof (Theorem 3). We prove the contrapositive. Assume the adversarial struc-
tures {Γ ′

n} for the 2CNF family represented by {Gn} had size polynomial in |Gn|
and so polynomial in n. Then {Γ ′

n} is a polynomial-size circuit family for MISS.
As MISS is NP-hard, every NP-problem has a polynomial-size circuit family,
hence NP ⊆ P/poly. ��

The NP-hardness of MISS is proved by reducing from 3SAT. The proof is
inspired by Karp’s canonical proof for NP-hardness of independent set.
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Proof (NP-hardness of MISS). There are two types of vertices in Gn. Type
1 vertices are labeled by the 56

(
n
3

)
pairs (c, a), where c ranges over all 8

(
n
3

)

possible 3CNF clauses in n variables and a ranges over the 7 possible satisfying
assignments of c. For example, (x2 ∨ x3 ∨ x5, 001) is a vertex in Gn because
x2 = 0, x3 = 0, x5 = 1 is a satisfying assignment for this clause. Type 2 vertices
are labeled by (c, �) where c again ranges over possible 3CNF clauses. There are
two types of edges in Gn:

1. Inconsistency edges between type 1 vertices (c, a), (c′, a′) when assignments
a and a′ are inconsistent. For example, there is an edge between (x2 ∨ x3 ∨
x5, 001) and (x3 ∨ x5 ∨ x6, 001) because the corresponding assignments to x5

are inconsistent.
2. Clique edges between all 8 vertices (c, a) including when a = � for every c.

In particular the clique edges ensure that no independent set of size greater than
8
(
n
2

)
exists in Gn.

The portion of the Gn induced by the 16 vertices of the form (x2 ∨x3 ∨x5, ·)
and (x3 ∨ x5 ∨ x6, ·) is illustrated in Fig. 2.

Given a 3CNF φ with n variables the reduction from 3SAT to MISS outputs
the set

Y = {(c, a) of type 1 : c is a clause of φ} ∪
{(c, �) of type 2 : c is not a clause of φ}.

We now argue that the reduction is correct: φ is satisfiable if and only if Y
contains some maximal independent set in Gn.

Assume φ is satisfiable and let x be the satisfying assignment. Let I be the
set consisting of all type 1 vertices (c, a) where a is the partial assignment of x
to the variables in c together with all type 2 vertices (c, �) where c is not a clause
of φ. By construction I is a subset of Y , and moreover I contains exactly one
vertex of the form (c, ·) for all 8

(
n
3

)
possible n-variate 3CNF clauses c. Therefore,

I is maximal.
If φ is not satisfiable then every independent set I ⊆ Y must miss all type 1

vertices (c, a) for at least one clause c of φ. Otherwise, the partial assignments a
would be mutually consistent, so they could be stitched together into a satisfying
assignment for φ. Then I ∪ {(c, �)} is also an independent set in Gn so I is not
maximal. ��

4.2 Efficient Adversarial Structures for Read-Once Formulas

A formula is a circuit with fan-out one. The formula is read-once if all leaves are
labelled by different variables. The size of the formula is the number of leaves.

Theorem 4. If Γ : {0, 1}n → {0, 1} is computed by a size-s read-once AND/OR
formula with s∨ fan-in two OR gates, then Γ ′ can be computed by an AND/OR
formula of size at most s + n · s∨.
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Fig. 2. The portion of Gn induced by the 16 vertices of the form (x2 ∨ x3 ∨ x5, ·) and
(x3 ∨ x5 ∨ x6, ·). The hatched rectangles represent cliques.

The class mNC1 [31] consists of all Boolean function families that are repre-
sented by polynomial-size formulas over some fixed complete basis of monotone
functions. The basis may be fixed to {AND,OR} without loss of generality.
Equivalently mNC1 can be defined as the class of bounded fan-in monotone cir-
cuits of depth O(log n).

In the context of secure computation, mNC1 contains access structures of
interest beyond a single threshold. This allows greater flexibility with fine-
grained access control in credential systems. Popular vote aggregation rules such
as thresholds of thresholds (Corollary 2) and ranked choice (as in Australian
elections) can be efficiently implemented in mNC1. The resulting composed zero-
knowledge proof assures correctness of the ballot count.

As a consequence of Theorem 4 we obtain the closure of read-once projections
to mNC1 under the transformation Γ → Γ ′. We say that Boolean function
f(y1, . . . , ym) projects to g(x1, . . . , xn) if there exists a map ι : [m] → [n] for
which g(xι(1), . . . , xι(m)) = f(x1, . . . , xn) for all x.

Corollary 1. For every Γ ∈ mNC1 there exists a read-once family ΓRO that
projects to Γ and for which Γ ′

RO is in mNC1. Moreover, Γ ′
RO can be computed

from Γ in polynomial time.

As a special case, we obtain the following bound for bounded-depth formulas
with threshold gates:

Corollary 2. If Γ is a depth-d formula over unweighted threshold gates of arity
at most k then Γ ′

RO has AND/OR formula size at most kO(d).

Proof. As majority over k bits has AND/OR formula size k5.3 [4,40], any thresh-
old of arity at most k can be computed by a size-(2k)5.3 AND/OR formula.
Replacing each threshold gate with this formula gives a size-(2k)5.3d AND/OR
formula for Γ . As the number of inputs to Γ is at most kd by Theorem 4 the
AND/OR formula size of Γ ′

RO is at most (2k)6.3d. ��
A possible direction for improving the constant 6.3 in the exponent is to

generalize the composition rules (1) below to arbitrary thresholds.
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Proof. (Theorem 4). The formula for Γ ′ is inductively constructed from the
formula for Γ using the following composition rules (assuming Γ and Δ are not
constant):

(Γ (x) ∧ Δ(y))′ = Γ ′(x) ∧ Δ′(y)
(Γ (x) ∨ Δ(y))′ = (Γ ′(x) ∧ (∧iyi)) ∨ (Δ′(y) ∧ (∧ixi))

id′ = 1.
(1)

In the AND and OR rules, the sets of x and y-variables X = {x1, . . . , xn} and
Y = {y1, . . . , ym} are assumed to form a partition (they are disjoint and cover
all variables). In the last rule, id : {0, 1} → {0, 1} stands for the identity function
id(x) = x.

The claimed complexity bound follows by strong induction over size. It
remains to verify the correctness of the composition rules. We will show that
the formulas on the left and right hand side of all three rules have the same
minterms and are therefore logically equivalent. Let M and N stand for the
minterms of Γ and Δ. We identify the ground set with X ∪ Y .

For the AND rule, the minterms of Γ ∧ Δ are A ∪ B where A ∈ M and
B ∈ N : All such sets are accepted, and omitting any element from either causes
Γ or Δ to reject. As A and B are disjoint, the minterms of (Γ ∧ Δ)′ are all sets
of the form (X ∪ Y ) \ (A ∪ B) = (X \ A) ∪ (Y \ B), which are the unions of all
minterms of Γ ′ and all minterms of Δ′. These are the minterms of Γ ′ ∧ Δ′.

For the OR rule, the minterms of Γ ∨ Δ are M ∪ N : All of the sets are
accepted, and owing to disjointness taking out an element from a set in say M
will cause both Γ and (by default) Δ to reject. The minterms of (Γ ∨ Δ)′ are
therefore all sets of the form (X ∪ Y ) \ A = (X \ A) ∪ Y for A ∈ M as well as
(X ∪ Y ) \ B = X ∪ (Y \ B) for B ∈ N . These are the minterms of Γ ′(x)∧ (∧iyi)
and Δ′(y)∧ (∧ixi), respectively. We argue that their union equals the minterms
of the OR of these two formulas: Clearly the OR accepts all terms in the union.
Moreover, removing any element, say xi causes both these formulas to reject.

For the identity rule, id has a unique minterm {x} and its complement is the
empty set, which is the unique minterm of the constant function 1. ��

5 Extending Challenge Space for k-Special Sound
Protocols

In the original protocol of [22], if the challenge space of the Σ-protocol is bigger
than the domain of the secret sharing scheme, that is, the bit lengths of challenges
in the Σ-protocols are larger than the lengths of shared challenges, then there
exist natural maps from shared secrets to shared challenges. This is also true
when the two spaces are the same. The problem occurs when the challenge
space is smaller than the domain of secret sharing. Some shared secrets can not
be distributed to the challenge space naturally.

[22] proposed the following theorem, i.e., parallel repetition to solve this issue
for Σ-protocols.
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Theorem 5 (Challenge-length Amplification [17,22]). Let Π be a Σ-
protocol for relation R and challenge length l. Running Π t-times in parallel
for the same instance x corresponds to running Σ-protocol for R with challenge
length t · l.

Parallel repetition works perfectly for Σ-protocols, which is 2-special sound.
Unfortunately, such method does not apply to k-special sound protocols with
secret sharing. First recall the definition of k-special soundness: the extractor
takes as input a statement x and k accepting transcripts (a, c1, z1), . . . , (a, ck, zk)
with common first message a and pairwise distinct challenges c1, . . . , ck outputs
a witness w s.t. R(x,w) = 1. In a t-fold parallel repetition, each transcript
Πi, i ∈ [k] consists of t-tuples (a1, c1i , z

1
i ), . . . , (a

t, ct
i, z

t
i). The extractor expects

that given k distinct all accepting transcripts all least one out of t tuples con-
tains k pairwise distinct transcripts (aj , cj

1, z
j
1), . . . , (a

j , cj
k, zj

k). The expectation
cannot be satisfied in general, since for any distinct transcript Πi and Πj there
may be only one position out of t that is different. In the worst case, only after
collecting ((k − 1)t + 1) distinct transcripts will the extractor extract a witness.
In fact, a t-fold k-special sound protocol is actually a ((k−1)t+1)-special sound
protocol.

We attempt to solve this issue in this section. Our intuition is to guarantee
that when collecting k t-wise accepting transcripts, there exists at least 1-out-
of-t repetition having k-distinct valid transcripts with high probability. We show
that if the k-special soundness property allows for some negligible knowledge
error, then a t-fold parallel repetition of a perfect k-special sound protocol is
still k-special sound with negligible error.

In Sect. 5.1, we first start from the simpler case of k-special sound Σ-protocols.
We prove that parallel repetition of a perfect k-special sound protocol is still
statistical k-special sound. In Sect. 5.2, we further extend this theorem to the
multi-round version.

5.1 Statistical k-Special Soundness

We prove that if the k-special soundness property allows for some negligible
knowledge error, then a t-fold parallel repetition of a perfect k-special sound
protocol is still statistical k-special sound with negligible error. The definition of
k-special soundness is modified as follows: the extractor which takes as input a
statement x and k accepting transcripts (a, c1, z1), . . . , (a, ck, zk) with common
first message a and pairwise distinct challenges c1, . . . , ck outputs a witness w
s.t. R(x,w) = 1 except for some negligible probability κ. We denote this κ as
the special soundness error.

Definition 13 (Statistical k-Special Soundness). A 3-round public-coin
proof is statistical k-special sound if there exists a polynomial-time algorithm
that, given any k distinct transcripts

(
x, a, ci∈[k], zi∈[k]

)
that satisfies ci �= cj for

every i �= j and V (x, a, ci, zi) = 1 for i ∈ [k], outputs w such that R(x,w) = 1
except for some negligible probability κ (over the choice of challenges). We denote
this κ as the special soundness error.
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Theorem 6. The t-fold parallel repetition Πt of a perfect k-special sound proto-
col Π with challenge space C is a statistical k-special sound protocol with special
soundness error κ decaying exponentially with the growth of t.

Proof. The extractor is given k t-fold accepting transcripts. Each t-fold tran-
script has at least one challenge different from other transcripts (in the same
fold). The extractor expects that if t is large enough, then with high probability
in one certain fold all the challenges are pairwise distinct. We can view the game
as follows:

Suppose a t-column matrix C of which the elements c ∈ C. Without loss
of generality we assume |C| = q. In matrix C every row is different from each
other row (at least for one column). There are qt such rows. Each row represents
possible challenges for t-fold accepting transcripts. Now select k rows from qt

rows, which compose a k-by-t sub-matrix. The special soundness error κ is the
probability that no columns has all pairwise distinct elements. We denote B as
the set of all such sub-matrices. We have

|B| ≤ (qk − q!
(q − k)!

)t.

The inequality is because the right side takes repeated rows into account. Let
S be the set of all possible sub-matrices chosen from accepting qt rows, then

|S| = qt!
(qt − k)!

.

Then the special soundness error κ can be computed as:

κ =
|B|
|S|

≤
(qk − q!

(q−k)! )
t

qt!
(qt−k)!

≤ (qk − (qk − kqk−1))t

qtk − kqt(k−1)

=
(kqk−1)t

qtk − kqt(k−1)

=
kt

qt − k

=
1

( q
k )

t − k
kt

.

Since k < q, κ ≤ 1
( q

k )t− k
kt

decays exponentially with the growth of t. By setting t

slightly larger than λ
log q

k
, the special soundness error κ ≤ 2−λ which is negligible

in λ.
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It remains to prove the case of k = q which often happens when q is small.
We have

κ =
|B|
|S|

≤ (qq − q!)t
qt!

(qt−q)!

≤ (qq − ( q
e )

q)t

( qt

e )
q

= eq(1 − 1
eq

)t

≤ eq− t
eq .

By setting t slightly larger than (λ+q)eq, the special soundness error κ ≤ 2−λ

which is negligible in λ. ��
Next we prove that statistical k-special soundness still implies knowledge

soundness.

Theorem 7. Let Π be a statistical k-special sound protocol with challenge space
C and special soundness error κ. Then Π is knowledge sound with knowledge
error κKS = (k − 1)/q + κ, where q = |C| denotes the size of challenge space C.

Proof. The proof idea is straightforward. The knowledge extractor EKS can be
seen as a combination of the following procedures:

1. Given the cheating prover P ∗ the knowledge extractor invokes a tree builder
to extract sufficient accepting transcripts;

2. Given sufficiently many accepting transcripts, the knowledge extractor runs
corresponding extractor for special soundness to extract a witness.

The tree builder in Step 1 is exactly the same as any of the classical results
for perfect k-special soundness [7,8,19]. The probability for failing to extract
sufficient amount of accepting transcripts is bounded by (k−1)/q. In Step 2, the
corresponding extractor has a probability κ of failure. Thus, the total knowledge
error κKS ≤ (k − 1)/q + κ, which completes the proof. ��

5.2 Statistical Special Soundness for Multi-round Protocols

We now analyze the previous results in the multi-round setting as presented in
Definition 12. We stress that parallel repetition of multi-round protocols suf-
fer from exactly the same issue as the composition of multi-round protocols.
The tree of transcripts does not guarantee that pairwise distinct challenges can
be obtained at the same position among different rounds, leading to a failed
extraction by the extractor.
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Theorem 8. The t-fold parallel repetition Πt of a perfect (k1, . . . , kμ)-special
sound protocol Π with challenge space C1 × · · · × Cμ is a statistical (k1, . . . , kμ)-
special sound protocol with special soundness error κ decaying exponentially with
the growth of t.

Proof. Similarly, the extractor is given a t-fold (k1, . . . , kμ)-tree of accepting
transcripts. Each t-fold transcript has at least one challenge different from other
transcripts (in the same fold) in each round. The extractor expects that if t is
large enough, then with high probability in one certain fold all the challenges
are pairwise distinct. We can view the game as follows:

Suppose a t-column matrix C = C1||C2|| . . . ||Cμ concatenated by rows. The
elements in Ci are chosen from Ci. Without loss of generality we assume |Ci| = qi.
In matrix Ci each row is different from any other row (at least at one column).
There are qt

i such rows. Each row represents possible challenges for t-fold accept-
ing transcripts. Now select ki rows from qt

i rows, which compose a ki-by-t sub-
matrix. The special soundness error κ is the probability that for all matrices
Ci(i ∈ [μ]) no columns have all pairwise distinct elements. We denote B as the
set of all such sub-matrices. We have

|B| ≤ (
∏

i

qki
i −

∏

i

qi!
(qi − ki)!

)t.

The inequality is because the right side takes repeated rows into account. Let
S be the set of all possible sub-matrices chosen from all accepting rows, then

|S| =
∏

i

qt
i !

(qt
i − ki)!

.

Then the special soundness error κ can be computed as:

κ =
|B|
|S|

≤
(
∏

i qki
i − ∏

i
qi!

(qi−ki)!
)t

∏
i

qt
i !

(qt
i−ki)!

≤ (
∏

i qki
i − ∏

i(q
ki
i − kiq

ki−1
i ))t

∏
i(q

tki
i − kiq

t(ki−1)
i )

=
(
∏

i qi − ∏
i(qi − ki))t∏

i(q
t
i − ki)

=
(
∏

i
qi

ki
− ∏

i(
qi

ki
− 1))t

∏
i((

qi

ki
)t − ki

kt
i
)

.

By setting t slightly larger than λ∑
i log

qi
ki

, the special soundness error κ ≤ 2−λ

which is negligible in λ.
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The case where there exists some ki = qi can be directly combined from the
above proof and the case of k = q in Theorem 6.

Specifically, for the case of ki = qi for all i ∈ [μ], we have

κ =
|B|
|S|

≤ (
∏

i qqi

i − ∏
i qi!)t

∏
i

qt
i !

(qt
i−qi)!

≤ (
∏

i qqi

i − ∏
i(

qi

e )
qi)t

∏
i(

qt
i

e )
qi

= e
∑

i qi(1 − 1
e
∑

i qi
)t

≤ e
∑

i qi− t

e
∑

i qi .

By setting t slightly larger than (λ+
∑

i qi)e
∑

i qi , the special soundness error
κ ≤ 2−λ which is negligible in λ. ��

Finally, similar to statistical k-special soundness, we prove that statistical
(k1, . . . , kμ)-special soundness implies knowledge soundness.

Theorem 9. Let Π be a (2μ + 1)-round statistical (k1, . . . , kμ)-special sound
protocol with challenge space C1 × C2 × · · · × Cμ and special soundness error κ.
Then Π is knowledge sound with knowledge error κKS = 1 − ∏μ

i=1
qi−ki+1

qi
+ κ,

where qi = |Ci| denotes the size of challenge space Ci.

Proof. Similar to Theorem 7, the proof idea is straightforward. The knowledge
extractor EKS can be seen as a combination of the following procedures:

1. Given the cheating prover P ∗ the knowledge extractor invokes a tree builder
to extract sufficient accepting transcripts;

2. Given sufficiently many accepting transcripts, the knowledge extractor runs
corresponding extractor for special soundness to extract a witness.

The tree builder in Step 1 is exactly the same as any of the classical results for
perfect (k1, . . . , kμ)-special soundness [7,8]. The probability for failing to extract
sufficient amount of accepting transcripts is bounded by 1 − ∏μ

i=1
qi−ki+1

qi
. In

Step 2, the corresponding extractor has a probability κ of failure. Thus, the total
knowledge error κKS ≤ 1 − ∏μ

i=1
qi−ki+1

qi
+ κ, which completes the proof. ��

6 Conclusion

In this paper we present multi-round and k-special sound adaptation of CDS
composition that features soundness preserving, offline simulation, mNC1 access
structure, and round preserving in the plain model. We also study about the
complexity of adversarial structures and extension of challenge space for k-special
sound protocols.

Some interesting open problems remain:
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– Can we have a multi-round composition preserving zero-knowledge, and
soundness at the same time as the original CDS does?

– If the above is not possible, can we achieve the same goal with post-quantum
security? It requires a quantum-secure dual-mode commitment scheme with
demanded properties and associated Σ-protocols. Note that our composition
is already sound against unbound, including quantum, prover even though
the mentioned building blocks are instantiated in the classical setting.

– Can we go beyond Γ ∈ mNC1, e.g., MSP, without paying too much cost?
Since we have shown that computing Γ ′ from Γ is hard, the construction
must eliminate proofs for Γ ′ requiring a novel approach.

Acknowledgements. We are grateful to Siyao Guo for useful advice and anonymous
reviewers from Eurocrypt 2024 and Crypto 2024 for helpful comments. Work supported
by European Research Council (ERC) under the EU’s Horizon 2020 research and inno-
vation programme (Grant agreement No. 101019547) and Cariplo CRYPTONOMEX
grant.

A Dual-Mode Commitment Scheme from DDH

This section presents an instantiation of a dual-mode commitment scheme asso-
ciated with a Σ-protocol for proving correct generation of a binding key. We
first describe the dual-mode commitment scheme taken from [38] with a modifi-
cation that the prover generates the public parameters, (G, q, g), and chooses a
random generator h by itself while they are given as a common reference string
in [38]. This results in losing the original computational binding property in
the hiding mode, which we do not need in our construction. It is noted that it
does not spoil the computational hiding property in the binding mode as well as
the mode indistinguishability where the adversary is the verifier. We instantiate
dmCom = {CGenBIND,CGenHIDE,Com,Eqv} as follows:

– CGenBIND(1λ) → ck: Run (G, q, g) ← G(1λ). Choose h ←$G, and
(ρ1, ρ2) ←$Z

2
q. Compute u = gρ1 and v = gρ2 , and output ck :=

(G, q, g, h, u, v).
– CGenHIDE(1λ) → (ck, td): As above, except for choosing ρ ←$Zq, and comput-

ing u = gρ, and v = hρ. Output ck := (G, q, g, h, u, v), and td := ρ.
– Comck(m; r) → com: Choose r ←$Zq and compute a = gr/um and b = hr/vm.

Output com := (a, b).
– Eqvtd(com, ck,m′, r′,m) → r: Take ρ from td and output r := (r′−ρm′)+ρm.

Theorem 10. The above dmCom is a dual-mode commitment scheme. It is per-
fectly binding in the binding mode, and equivocal in the hiding mode. It is mode
indistinguishable and computationally hiding in the binding mode under the deci-
sion Diffie-Hellman assumption relative to G.

Proof. For a commitment, (a, b), let ã := logg a, b̃ := logh b and x := logg h. We
first show that dmCom is perfectly binding in the binding mode. From a = gr/um
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and b = hr/vm, we have ã = r + ρ1m and b̃ = r + ρ2m. Since ρ1 �= ρ2, they
determine m ∈ Zq uniquely by m = (ã − b̃)/(ρ1 − ρ2). To show that commit-
ments are computationally hiding in the binding mode under the DDH assump-
tion, consider two distributions, C(m) and R, over variables (g, h, u, v, a, b) that
(g, h, u, v) is generated by CGenBIND(1λ), and (a, b) for C(m) is generated by
Comck(m) with ck := (G, q, g, h, u, v), and (a, b) for R is uniform over G

2. We
then set up the following hybrid. For a given DDH question Q := (g, gr, h, hr′

)
and message m, let (u, v) ←$G

2 and (a, b) := ((gr)/um, (hr′
)/vm). If Q is taken

from the DDH distribution where r = r′, (g, h, u, v, a, b) is in C(m). On the other
hand, if Q is taken from the random distribution where r �= r′, (g, h, u, v, a, b)
is in R. Thus, distinguishing C(m) and R is hard under the DDH assumption.
For m′(�= m), C(m′) and R are indistinguishable for the same reason. Thus, for
any m and m′, two distributions C(m) and C(m′) are indistinguishable under
the DDH assumption.

We next show that dmCom is perfectly hiding in the hiding mode. Since
u = gρ and v = hρ, we have ã = b̃ = r − ρm. Thus, for any m′, there exists r′

that satisfies ã = b̃ = r′ − ρm′. Therefore, (r,m) is perfectly hiding.
Mode indistinguishability is directly from the DDH assumption. The quadru-

ple (g, h, u, v) in a hiding key is in the DDH distribution, and the one in a binding
key is in the uniform distribution. Thus, they are indistinguishable under the
DDH assumption.

Finally, equivocality is verified by inspecting that r′ = (r−ρm)+ρm′ satisfies
a = gr/um = gr′

/um′
and b = hr/vm = hr′

/vm′
.

��
We present a Σ-protocol Πbind for proving that ck := (G, q, g, h, u, v) is a bind-

ing key. We assume that group generator G is transparent, i.e., (G, q, g) ∈ G(1λ)
can be verified publicly, and focus on the relation among (g, h, u, v). Concretely,
the proof is for the following relation:

Rbind := {(ρ1, ρ2) |u = gρ1 ∧ v = hρ2 ∧ ρ1 �= ρ2} .

Inequality ρ1 �= ρ2 is shown by checking d
(ρ1−ρ2)
1 �= 1G for a random generator

d1.

[ Πbind : Proof of Binding Key]

– Prover’s private input is (ρ1, ρ2), and the common input to the prover and
verifier is ck := (G, q, g, h, u, v).

– Prover computes d1 ←$G, d2 := d
(ρ1−ρ2)
1 , (r1, r2) ←$Z

2
q, a1 := gr1 , a2 := hr2 ,

a3 := dr1−r2
1 , and sends (a1, a2, a3, d1, d2) to the verifier.

– Verifier selects c ←$Zq and send it to Prover.
– Prover computes z1 = r1 − c ρ1, z2 = r2 − c ρ2, and send (z1, z2) to Verifier
– Verifier accepts if a1 = gz1uc, a2 = hz2vc, a3 = dz1−z2

1 dc
2, d1 �= 1G, and

d2 �= 1G. Reject, otherwise.

Theorem 11. Πbind is a three-round public-coin proof protocol for relation
Rbind. It is complete, 2-special sound, and honest verifier zero-knowledge.
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Proof. We focus on soundness and zero-knowledge properties since oth-
ers are direct from the construction. To prove 2-special soundness,
we construct an extractor, E , as follows. Given a colliding transcript
(ck, a1, a2, a3, d1, d2, c, z1, z2, c

′, z′
1, z

′
2) that satisfies

a1 = gz1uc = gz′
1uc′

, (2)

a2 = hz2vc = hz′
2vc′

, (3)

a3 = dz1−z2
1 dc

2 = d
z′
1−z′

2
1 dc′

2 , (4)

c �= c′, d1 �= 1, and d2 �= 1, extractor E computes

ρ1 :=
z′
1 − z1
c − c′ , ρ2 :=

z′
2 − z2
c − c′ ,

and outputs (ρ1, ρ2).
To verify that E is correct, observe that, from (2) and (3):

z1 + logg u · c = z′
1 + logg u · c′ ⇒ logg u =

z′
1 − z1
c − c′ = ρ1, and

z2 + logh v · c = z′
2 + logh v · c′ ⇒ logh v =

z′
2 − z2
c − c′ = ρ2.

Also, from (4),

(z1 − z2) + c logd1
d2 = (z′

1 − z′
2) + c′ logd1

d2 ⇒ logd1
d2 =

z′
1 − z1
c − c′ − z′

2 − z2
c − c′

⇒ logd1
d2 = logg u − logh v = ρ1 − ρ2.

Since d1 �= 1 and d2 �= 1, logd1
d2 �= 0. Thus, we have ρ1 − ρ2 �= 0, proving

ρ1 �= ρ2.
To prove honest verifier zero-knowledge, we construct a simulator, S, as fol-

lows. Given instance ck = (G, g, h, u, v), S picks c, z1, z2 uniformly and indepen-
dently of Zq. It also chooses d1 and d2 uniformly and independently of G. It
then computes ã1 := gz̃1uc, ã2 := hz̃2vc, and ã3 := dz̃1−z̃2

1 dc
2. Finally, it outputs

(a1, a2, a3, d1, d2, c, z1, z2).
We show that the above output from the simulator is computationally indis-

tinguishable from that observed in a real protocol run. We construct a hybrid as
follows. Given DDH question Q := (g,A,B,C) relative to G(1n), we set u = A,
v = hρ2 , d1 = B and d2 = CB−ρ2 , and create other variables as prescribed by the
simulator. This implies ρ1 = logg A. If Q is in the DDH distribution, C = Bρ1 .
We then have d2 = Bρ1−ρ2 . Thus, the transcript is in the same distribution as
the real prover outputs. On the other hand, if Q is in a random distribution,
d2 distributes uniformly as in the simulated transcript due to the randomness
of C. Accordingly, the simulated and real transcripts are indistinguishable if the
DDH assumption holds for G(1n). This concludes the proof of honest verifier
computational zero-knowledge of Πbind.

��
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